Serine-palmitoyl transferase activity in cultured human keratinocytes.
نویسندگان
چکیده
Sphingolipids comprise approximately 25% of the stratum corneum lipids and are considered critical constituents of the epidermal permeability barrier. Whether sphingoid base structures are synthesized in the epidermis or whether they are derived from circulating or dermal sources is not known. We report here the initial characterization of serine-palmitoyl transferase (EC 2.3.1.50; SPT), the rate-limiting enzyme in the synthesis of sphingolipids, from cultured human neonatal keratinocytes. Subcellular fractionation studies demonstrated that 79% of the total cellular SPT activity was associated with the microsomes. The specific activity of keratinocyte SPT was 270 +/- 20 pmol/min per mg of microsomal protein, a level significantly higher than activities reported in other tissues. Keratinocyte SPT showed an apparent Km for L-serine of 0.40 (+/- 0.04 mM, with an alkaline pH optimum (8.2 +/- 0.4). Keratinocyte SPT utilizes palmitoyl-CoA preferentially over other saturated or unsaturated acyl-CoA substrates; increasing acyl-CoA chain lengths above C16 by one or two carbons was less detrimental to activity than similar decrements in chain length. Finally, the mechanism-based inhibitors L-cycloserine and beta-chloro-L-alanine, demonstrated potent inhibition of keratinocyte SPT activity, with 50% inhibitory concentrations of approximately 3.0 and 25 microM, respectively. In summary, we have found that cultured human neonatal keratinocytes contain unusually high levels of serine-palmitoyl transferase activity, and that the substrate specificity of keratinocyte SPT may determine the base composition of epidermal sphingolipids.
منابع مشابه
Magnesium deficiency upregulates serine palmitoyl transferase (SPT 1 and SPT 2) in cardiovascular tissues: relationship to serum ionized Mg and cytochrome c.
The present work tested the hypothesis that a short-term dietary deficiency of magnesium (Mg) (21 days) in rats would result in the upregulation of the two major subunits of serine palmitoyl-CoA-transferase, serine palmitoyl transferase (SPT 1) and SPT 2 (the rate-limiting enzymes responsible for the de novo biosynthesis of ceramides) in left ventricular, right ventricular, and atrial heart mus...
متن کاملParallel regulation of sterol regulatory element binding protein-2 and the enzymes of cholesterol and fatty acid synthesis but not ceramide synthesis in cultured human keratinocytes and murine epidermis.
After permeability barrier perturbation there is an increase in the mRNA levels for key enzymes necessary for lipid synthesis in the epidermis. The mechanism(s) responsible for this regulation is unknown. Sterol regulatory element binding proteins-1a, 1c, and -2 (SREBPs) control the transcription of enzymes required for cholesterol and fatty acid t synthesis in response to modulations of sterol...
متن کاملIntracellular APP Domain Regulates Serine-Palmitoyl-CoA Transferase Expression and Is Affected in Alzheimer's Disease
Lipids play an important role as risk or protective factors in Alzheimer's disease (AD), a disease biochemically characterized by the accumulation of amyloid beta peptides (Aβ), released by proteolytic processing of the amyloid precursor protein (APP). Changes in sphingolipid metabolism have been associated to the development of AD. The key enzyme in sphingolipid de novo synthesis is serine-pal...
متن کاملWater-Soluble Organic Germanium Promotes Both Cornified Cell Envelope Formation and Ceramide Synthesis in Cultured Keratinocytes
We investigated whether 3-(trihydroxygermyl) propionic acid increases the formation of cornified cell envelopes and the level of ceramide in cultured epidermal keratinocytes and in a three-dimensional human epidermis model. The activity and mRNA expression of transglutaminase were increased when 3-(trihydroxygermyl) propionic acid was added to the cell cultures. The formation of cornified cell ...
متن کاملUsing a biologically annotated library to analyze the anticancer mechanism of serine palmitoyl transferase (SPT) inhibitors
Mechanistic understanding is crucial to anticancer drug discovery. Here, we reveal that inhibition of serine palmitoyl transferase (SPT), the rate-limiting enzyme in sphingolipid synthesis, induced death in a lung cancer cell line via a necrosis-dependent pathway. To elucidate the mechanism of cell death induced by SPT inhibition, a biologically annotated library of diverse compounds was screen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 31 9 شماره
صفحات -
تاریخ انتشار 1990